
Advanced	security	notions	for	the	SSH	
secure	channel:	theory	and	practice	
	
Kenny	Paterson		-	@kennyog		
Based	on	joint	work	with	Martin	Albrecht,	Jean	Paul	
Degabriele	and	Torben	Hansen	

Information	Security	Group	

Overview	

1.  Introducing	SSH		
2.  SSH	measurement	study	

3.  An	unfortunate	sequence	of	attacks	on	CBC-mode	in	
OpenSSH	

4.  Security	analysis	of	other	SSH	and	OpenSSH	modes	
–	CTR,	ChaChaPoly,	gEtM,	AES-GCM.	

5.  Better	security	for	SSH:	InterMAC	

6.  Concluding	remarks	

2	

Introducing	SSH	and	related	work	

Introduction	to	SSH	

4	

Secure Shell or SSH is a network protocol that allows data to
be exchanged using a secure channel between two
networked devices. Used primarily on Linux and Unix based
systems to access shell accounts, SSH was designed as a
replacement for TELNET and other insecure remote shells,
which send information, notably passwords, in plaintext,
leaving them open for interception. The encryption used by
SSH provides confidentiality and integrity of data over
an insecure network, such as the Internet.

 – Wikipedia

SSH	Binary	Packet	Protocol	

5	

Encrypt

MAC

Payload

Ciphertext MAC tag

Sequence
Number 4

Packet
Length 4

Pad
Len 1

Padding
 ≥4

•  Stateful	Encode-then-E&M	construction	

•  Packet	length	field	measures	the	size	of	the	packet:	|PadLen|+	|Payload|	+	|Padding|.	
•  RFC	4253	(2006):	various	block	ciphers	in	CBC	mode	(with	chained	IV)	and	RC4.	
•  RFC	4344	(2006):	added	CTR	mode	for	the	corresponding	block	ciphers.		

Timeline	of	related	work	on	SSH	BPP	

2002. 		
•  Formal	security	analysis	of	SSH	BPP	by	Bellare,	Kohno	and	Namprempre	

[BKN02]:	introduce	stateful	security	notions	for	symmetric	encryption	and	
proved	SSH-CTR	and	SSH-CBC	variants	(w/o	IV	chaining)	secure.		

2009. 		
•  Albrecht,	Paterson	and	Watson	[APW09]	discover	a	plaintext-recovery	attack	

against	SSH	in	CBC	mode.		

•  The	attack	exploits	fragmented	delivery	in	TCP/IP,	and	works	on	all	CBC	
variants	considered	in	[BKN02].	

•  The	then	leading	implementation	was	OpenSSH	(reported	80%	of	servers);	
OpenSSH	team	release	a	patch	in	version	5.2	to	stop	the	specific	attack.	

6	

Timeline	of	related	work	on	SSH	BPP	

2010. 		
•  The	[APW09]	attack	highlights	deficiencies	in	the	[BKN02]	security	model.	

•  Paterson	and	Watson	[PW10]	prove	SSH-CTR	secure	in	an	extended	security	
model	that	allows	adversary	to	deliver	fragmented	ciphertexts.	

2012. 		
•  Boldyreva,	Degabriele,	Paterson	and	Stam	[BDPS12]	study	ciphertext	

fragmentation	more	generally,	addressing	limitations	in	the	[PW10]	model,	
introducing	IND-CFA	security.	

•  [BDPS12]	also	considers	boundary	hiding	and	resistance	to	a	special	type	of	
denial	of	service	attack	as	additional	security	requirements.		

7	

SSH	measurement	study	

SSH	measurement	study	

•  In	[ADHP16],	we	performed	a	measurement	study	of	SSH	
deployment.	

•  We	conducted	two	complete	IPv4	address	space	scans	in	Nov/Dec	
2015	and	Jan	2016	using	ZGrab/Zmap.	

•  Grabbing	banners	and	SSH	servers’	preferred	algorithms.	

•  Actual	cipher	used	in	a	given	SSH	connection	depends	on	client	and	server	
preferences.	

•  Roughly	224	servers	found	in	each	scan.	

•  Nmap	fingerprinting	suggests	mostly	embedded	routers	and	firewall	
devices.	

•  Data	available	at:	
	https://bitbucket.org/malb/a-surfeit-of-ssh-cipher-suites/overview	

9	

SSH	versions	

10	

Mostly	OpenSSH	
and	dropbear;	others	

less	than	5%.	

SSH	versions	

11	

Dropbear	at	56-58%.	
886k	older	than	version	
0.52,	so	vulnerable	to	
variant	of	2009	CBC-

mode	attack.			

The	state	of	SSH	today:	SSH	versions	

12	

OpenSSH	at	37-39%.	
166k	older	than	version	

5.2	and	prefer	CBC	
mode,	so	vulnerable	to	

2009	attack.	

SSH	versions	

•  Dropbear	dominates	over	OpenSSH.	

•  Long	tail	of	old	software	versions.	

•  Most	popular	version	of	OpenSSH	was	version	5.3,	released	
Oct	2009	(current	version	is	7.5).	

•  Determined	by	major	Linux	distros?	

•  Non-negligible	percentage	of	Dropbear	and	OpenSSH	
servers	were	potentially	still	vulnerable	to	the	2009	
attack.	

•  8.4%	for	Dropbear.	

13	

OpenSSH	preferred	algorithms	

14	

OpenSSH	preferred	algorithms(“@”=	“@openssh.com”)	

•  Lots	of	diversity	(155	different	combinations).	

•  CTR	dominates,	followed	by	CBC,	surprising	amount	of	EtM.	

•  ChaCha20-Poly1305	on	the	rise?	(became	default	in	OpenSSH	6.9).		

•  Small	amount	of	GCM.	

	

Dropbear	preferred	algorithms	

15	

Dropbear preferred algorithms

•  Less	diversity	than	OpenSSH.	

•  CTR	also	dominates,	followed	by	CBC.	

•  No	“exotic”	options.	

•  All	CBC	modes	unpatched	against	variant	of	2009	attack	(8.4%).	

An	unfortunate	sequence	of	attacks	on	CBC	
mode	in	OpenSSH	

SSH	Binary	Packet	Protocol	

17	

Encrypt

MAC

Payload

Ciphertext MAC tag

Sequence
Number 4

Packet
Length 4

Pad
Len 1

Padding
 ≥4

How	would	you	perform	decryption	for	an	incoming	sequence	
of	ciphertext	fragments?	

….	

The	[APW09]	attack	(simplified)	

•  Decryption	in	OpenSSH	CBC	mode	(prior	to	5.2):	
•  Use	a	buffer	to	hold	the	incoming	sequence	of	ciphertext	

fragments.	

•  Decrypt	the	fragments	block-by-block	as	they	arrive.	

•  4-byte	packet	length	field	LF	is	obtained	from	the	first	block	
of	the	first	fragment	to	be	received.	

•  Continue	to	buffer+decrypt	until	a	total	of		LF+|MAC|	bytes	
have	been	received.	

•  Verify	the	MAC	on	SQN	||	PTXT	(with	connection	
termination	and	error	message	if	MAC	verification	fails).	

18	

Breaking	CBC	mode	in	SSH	[APW09]	

19	

Ci-1
* Ci

*

Pi
*

dK

Target	ciphertext		
block	from	stream	

Breaking	CBC	mode	in	SSH	[APW09]	

20	

Ci
*

Inject	target	
block	as	first	block	of	

new	ciphertext!	

Breaking	CBC	mode	in	SSH	[APW09]	

21	

IV Ci
*

P0
’

dK

Treated	as	length	field		

Breaking	CBC	mode	in	SSH	[APW09]	

22	

IV Ci
*

P0
’

dK

R R

P2’

dK dK

P1’

		

Breaking	CBC	mode	in	SSH	[APW09]	

23	

IV Ci
*

P0
’

dK

•  Once	enough	data	has	arrived,	the	receiver	will	get	what	it	thinks	is	the	
MAC	tag	
–  The	MAC	verification	will	fail	with	overwhelming	probability	
–  So	the	connection	is	terminated	(with	an	error	message)	

•  Question:	How	much	data	is	“enough”	so	that	the	receiver	decides	to	
check	the	MAC?	

•  Answer:	whatever	is	specified	in	the	length	field:	

R R

P2’

dK dK

P1’

MAC tag

Breaking	CBC	mode	in	SSH	[APW09]	

24	

IV Ci
*

P0
’

dK

Ci-1
* Ci

*

Pi
*

dK

•  Knowing	IV	and	32	bits	of	P0
’,	the	attacker	can	now	recover	

32	bits	of	the	target	plaintext	block	Pi
*.	

LF	 ⊕ [IV]0..3 = ⊕ [Ci-1
*]0..3

		

The	[APW09]	attack	(less	simplified)	

•  OpenSSH5.1	actually	performs	two	sanity	checks	on	the	
length	field	when	decrypting	the	first	ciphertext	block:	
•  Check	1:	5	≤	LF	≤	218.	

•  Check	2:	total	length	(LF+4)	is	a	multiple	of	the	block	size:		

	 	 	 	 	 	LF	+4	mod	BL	=	0.	

•  Each	check	produces	a	different	error	message	on	the	
network,	distinguishable	by	attacker.	

•  If	both	checks	pass,	then	OpenSSH	waits	for	more	bytes,	
then	performs	MAC	check,	resulting	in	a	third	distinct	
error	message.		

•  The	different	error	messages	allow	up	to	32	bits	of	
plaintext	to	be	recovered	with	probability	2-18.	

25	

OpenSSH	5.2	patch	against	[APW09]	attack	

26	

No	error	message	is	sent	until	218	bytes	of	ciphertext	have	arrived.	

Is	this	a	good	patch?	

Sanity	checks:	
5	≤	LF	≤	218	

LF	+	4	mod	BL	=	0		
FAIL	 ssh2_msg_disconnect	

VERIFY FAIL	 “corrupted	MAC	on	input”	

Wait	until	218	bytes	have	arrived,		
then	check	a	MAC	on	218	bytes.	

Wait	until	218	bytes	have	arrived,		
then	check	a	MAC	on	218	bytes.	PASS	

Wait	for	LF+|MAC|	bytes	

OpenSSH	5.2	patch	against	[APW09]	attack	

27	

No	error	message	is	ever	sent	until	218	bytes	of	ciphertext	have	arrived.	

MAC	on	~LF	bytes	+	
MAC	on	218	bytes	

Sanity	checks:	
5	≤	LF	≤	218	

LF	+	4	mod	BL	=	0		
FAIL	 ssh2_msg_disconnect	

VERIFY FAIL	 “corrupted	MAC	on	input”	

Wait	until	218	bytes	have	arrived,		
then	check	a	MAC	on	218	bytes.	

MAC	on	218	bytes	

Wait	until	218	bytes	have	arrived,		
then	check	a	MAC	on	218	bytes.	PASS	

Wait	for	LF+|MAC|	bytes	

[ADHP16]	attack	against	the	OpenSSH	5.2	patch	

28	

Ci
*

C

218	bytes	(quickly)	

MAC	error	Time	

MAC	on	~LF	bytes	+	
MAC	on	218	bytes	
Sanity	check	PASS	

MAC	on	218	bytes	
Sanity	check	FAIL	

•  Attacker	can	distinguish	PASS/FAIL	conditions,	leaking	18	bits	of	plaintext.	
•  With	careful	timing,	attacker	can	recover	~30	bits	of	plaintext.	

OpenSSH	7.3	patch	against	[ADHP16]	attack	

29	 So	is	this	a	good	patch?	

MAC	on	~LF	bytes	+	
MAC	on	218	-	LF	bytes	

Sanity	checks:
5	≤	LF	≤	218	

LF	+	4	mod	BL	=	0		
FAIL	 ssh2_msg_disconnect	

VERIFY FAIL	 “corrupted	MAC	on	input”	

Wait	until	218	bytes	have	arrived,		
then	check	a	MAC	on	218	bytes.	

MAC	on	218	bytes	

Wait	until	218	bytes	have	arrived,		
then	check	a	MAC	on	218	bytes.	

Wait	until	218	bytes	have	arrived,		
then	check	a	MAC	on	218	-	LF	bytes.	

PASS	

Wait	for	LF+|MAC|	bytes	

MAC	on	218	bytes	
Sanity	check	FAIL	

MAC	on	~LF	bytes	+	
MAC	on	218	-	LF	bytes	
Sanity	check	PASS	

Attacking	the	OpenSSH	7.3	patched	patch	

30	

Ci

C

218	–	BL	–	1	bytes	(quickly)	

MAC	error	Time	

Wait	a	few	seconds	

1	byte	

Performed	during	the	wait	

Timing	difference	

MAC	on	218	bytes	
Sanity	check	FAIL	

MAC	on	~LF	bytes	+	
MAC	on	218	-	LF	bytes	
Sanity	check	PASS	

Attacking	the	OpenSSH	7.3	patched	patch	

31	

Ci

C

218	–	BL	–	1	bytes	(quickly)	

MAC	error	Time	

Wait	a	few	seconds	

1	byte	

Performed	during	the	wait	

Timing	difference	

Our	recommended	patch		
actually	made	things	
significantly	worse!		

I	wonder	if	anyone	noticed?	

I	think	we	got	away	with	it!	

I’m	not	so	sure!	

Disclosure	of	the	attacks	

•  We	first	notified	the	OpenSSH	team	of	the	attack	on	the	patch	for	
the	[APW09]	attack	on	5/5/2016.	

•  They	first	set	of	countermeasures	in	OpenSSH	7.3	(released	
1/8/2016).	

•  We	then	notified	OpenSSH	of	the	new	attack	on	15/12/2016,	along	
with	some	other,	more	subtle	byte	counting	issues.	

•  These	were	partly	addressed	in	OpenSSH	7.5	(released	20/3/2017).	

•  But	several	residual	issues	remain	unpatched,	including	the	final	
attack.	

•  In	defence	of	OpenSSH:	
•  OpenSSH	has	steadily	been	deprecating	old	algorithms	and	modes.	

•  For	example,	CBC	mode	was	already	disabled	by	default	in	OpenSSH	
6.7.	

33	

Security	analysis	of	other	SSH	and	OpenSSH	modes	–	
CTR,	gEtM,	AES-GCM,	ChaCha20Poly1305	

OpenSSH	encryption	modes		

A	number	of	new	schemes	have	been	introduced	in	OpenSSH	
since	[APW09]:	

•  AES-GCM:	since	v6.2;	length	field	not	encrypted	but	is	instead	
treated	as	associated	data.	

•  generic	Encrypt-then-MAC	(gEtM):	since	v6.2;	overrides	native	
E&M	processing;	length	field	not	encrypted	but	protected	by	
MAC.	

•  ChaCha20-Poly1305@openssh.com:	since	v6.5	and	promoted	
to	default	in	v6.9;	reintroduces	encryption	of	length	field.	

35	

Binary	Packet	Protocol	native	E&M	construction	

36	

Encrypt

MAC

Payload

Ciphertext MAC tag

Sequence
Number 4

Packet
Length 4

Pad
Len 1

Padding
 ≥4

Binary	Packet	Protocol	generic	EtM	construction	

37	

Encrypt

MAC

Payload

Ciphertext MAC tag

Sequence
Number 4

Packet
Length 4

Pad
Len 1

Padding
 ≥4

•  Stateful	Encode-then-EtM	construction.	
•  AES-GCM	works	similarly.	
•  Note	packet	length	field	in	the	clear.	
•  Code	=	documentation.	

Packet
Length

•  Sequence:	compute	MAC,	then	decrypt,	then	check	MAC.	

•  Issue	arises	because	of	retrofitting	gEtM	in	legacy	E&M	code.	

•  No	concrete	attack,	but	dangerous	to	decrypt	unauthenticated	ciphertext	(cf.	
padding	oracle	attacks).	

•  Addressed	in	OpenSSH	7.3.	

Binary	Packet	Protocol	generic	EtM	security	issue	

38	

ChaCha20-Poly1305@openssh.com	

39	

Payload

MAC tag

SQN
4

Packet
Length 4

Pad
Len 1

Padding
 ≥4

C1 C2

K1	
[SQN]64,Blk=[0]64	 ChaCha20 ChaCha20

K2	

ChaCha20
K2	

0256

Kpoly	
Poly1305

[SQN]64,Blk=[1]64	

[SQN]64,Blk=[0]64	

•  ChaCha20-Poly1305@openssh.com:	since	OpenSSH	6.5	and	promoted	to	default	in	
v6.9;	reintroduces	encryption	of	length	field.	

•  OpenSSH	developers	seem	to	care	a	lot	about	hiding	packet	lengths!	

Security	analysis	from	[ADHP16]	

• We	used	the	framework	of	[BDPS12]	for	symmetric	
encryption	schemes	supporting	ciphertext	
fragmentation	to	analyse	the	security	of	these	
schemes.	

• We	identified	and	fixed	a	technical	issue	in	the	IND-
sfCFA	confidentiality	definition	from	[BDPS12].	

• We	introduced	a	matching	notion	of	ciphertext	
integrity,	INT-sfCTXT,	which	was	not	considered	in	
[BDPS12].	

	
40	

Security	analysis	from	[ADHP16]	

Additional	goals	from	[BDPS12]:	

•  BH-CPA	(passive	adversary)	–	boundary	hiding	for	passive	attackers.	
•  BH-sfCFA	(active	adversary)	–	boundary	hiding	for	active	attackers.	
•  n-DOS-sfCFA:	decryption	must	produce	some	output	(plaintext	or	error)	after	

receiving	at	most	an	n-bit	sequence	of	fragments	chosen	by	adversary.	
41	

Security	comparison	of	SSH	AE	modes	

InterMAC	

•  An	encryption	scheme	proposed	in	[BDPS12].		

•  Parameterised	by	a	positive	integer	N	(the	chunk	length).	

•  Satisfies	all	5	security	notions:		
	IND-sfCFA,	IND-sfCTF,	BH-CPA,	BH-sfCFA,	(N	+	|MAC|)-DOS-sfCFA.	

•  Applies	a	generic	EtM	construction	to	chunks	of	data,	
incorporating	additional	metadata	in	the	MAC	computation.	

•  Simple,	easy	to	analyse	construction;	advanced	security	
properties	are	intuitively	obvious.	

•  Small	N:	good	DoS	protection,	but	larger	bandwidth	overhead.	

•  Idea:	refine	and	implement	InterMAC	in	OpenSSH	to	obtain	
stronger	security	than	is	currently	available.	

InterMAC	

43	

InterMAC	

44	

Payload

N-1	 N-1	 N-1	

0	 1	

0	
c	

“EtM”

c1	 τ1	

0	

1	
c	

“EtM”

c2	 τ2	

2	
c	

“EtM”

c3	 τ3	

c1	 τ1	 c2	 τ2	 c3	 τ3	

Chunk	CTR	
Msg	CTR	

InterMAC:	From	Theory	to	Practice	

•  Use	byte-oriented	rather	than	bit-oriented	format.	

•  Abandon	underlying	SSH	packet	format	(so	no	length	field,	no	
padding	byte,	no	random	padding).	

•  Need	some	kind	of	plaintext	padding	(length	not	usually	a	multiple	of	
N-1!):	variant	of	ABYTE	padding.	

•  Replace	EtM	with	nonce-based	AEAD,	e.g.	AES-GCM	or	ChaCha20-
Poly1305.	

•  Chunk	and	message	counter	then	become	Associated	Data,	or	are	
used	to	construct	the	nonce.	

•  We	choose	the	latter.	

45	

InterMAClib	and	OpenSSH	

•  C-implementation	of	InterMAC.	

•  Aim	is	to	make	the	library	easy	to	use	for	a	
developer.	

•  API:	im_initialise,	im_encrypt,	im_decrypt.	

•  Message	counter	and	nonce	management	done	by	
the	library.	

•  Currently	supports	ChaCha-Poly	and	AES-GCM.		

•  Easy	to	extend	with	other	AEAD	schemes.	

•  POC	integration	into	OpenSSH	(v7.4).	

•  SSH	InterMAC	cipher	suites:	im-aes128-gcm-N,	
im-chacha-poly-N.	

46	

0	

i	
c	

“EtM”

ci	 τi	

InterMAClib	Throughput	–	SCP	on	Loopback	

47	

0	 10	 20	 30	 40	 50	 60	 70	 80	

aes128-ctr	+	hmac-md5	

aes128-ctr	+	hmac-d5-etm@	

aes128-ctr	+	umac-64-etm@	

aes128-cbc	+	hmac-md5	

chacha20-poly1305@	

aes128-ctr	+	hmac-sha1	

3des-cbc	+	hmac-md5	

aes128-gcm@	

aes256-ctr	+	hmac-sha2-512	

aes128-cbc	+	hmac-sha1	

aes128-ctr	+	hmac-ripemd160	

im-aes128-gcm-128	

im-chacha-poly-128	

im-aes128-gcm-256	

im-chacha-poly-256	

im-aes128-gcm-512	

im-chacha-poly-512	

im-aes128-gcm-1024	

im-chacha-poly-1024	

im-aes128-gcm-2048	

im-chacha-poly-2048	

im-aes128-gcm-4096	

im-chacha-poly-4096	

MB/s	

InterMAClib	Throughput	–	AWS_London	to	
AWS_Oregon.	

48	

InterMAClib	Total	Bandwidth	–	AWS_London	to	
AWS_Oregon.	

49	

Concluding	Remarks	

Concluding	Remarks	

•  We	have	developed	a	deeper	understanding	of	the	diverse	
set	of	encryption	modes	available	in	(Open)SSH.	

•  Measurement	study,	new	attacks	on	CBC	mode,	security	analysis	

•  None	of	the	schemes	in	use	possesses	all	the	security	
properties	desirable	for	SSH.	

•  Boundary-hiding	and	DoS-resistance	not	achieved.	
•  Yet	such	schemes	do	exist,	e.g.	InterMAC	from	[BDPS12].	

•  In	our	on-going	work,	we	are	developing	and	prototyping	
efficient,	provably	secure	alternatives	that	have	all	the	
desired	properties.	

51	

Selected	Literature	

[BKN02]	Bellare,	Kohno,	Namprempre,	Authenticated	encryption	
in	SSH:	provably	fixing	the	SSH	binary	packet	protocol,	ACM	CCS	
2002.	

[APW09]	Albrecht,	Paterson,	Watson,	Plaintext	Recovery	Attacks	
against	SSH,	IEEE	Symposium	on	Security	and	Privacy	2009.	

[PW10]	Paterson,	Watson,	Plaintext-Dependent	Decryption:	A	
Formal	Security	Treatment	of	SSH-CTR,	Eurocrypt	2010.	

[BDPS12]	Boldyreva,	Degabriele,	Paterson,	Stam,	Security	of	
Symmetric	Encryption	in	the	Presence	of	Ciphertext	Fragmentation,	
Eurocrypt	2012.	

[ADHP16]	Albrecht,	Degabriele,	Hansen,	Paterson,	A	Surfeit	of	
SSH	Cipher	Suites,	ACM-CCS	2016.	
52	

