Advanced security notions for the SSH
secure channel: theory and practice

Kenny Paterson - @kennyog

ROYAL

Information Security Group SO s

Overview

1. Introducing SSH

2. SSH measurement study

3. Anunfortunate sequence of attacks on CBC-mode in
OpenSSH

4. Security analysis of other SSH and OpenSSH modes
— CTR, ChaChaPoly, getM, AES-GCM.

5. Better security for SSH: InterMAC

6. Concluding remarks

,f'
PSSR
RS
SRS BEGB,
NI CNC I SCNC I SEC IEC SECHE

N |.ﬂ /\ N 1"

Introducing SSH and related work

Introduction to SSH

Secure Shell or SSH is a network protocol that allows data to
be exchanged using a secure channel between two
networked devices. Used primarily on Linux and Unix based
systems to access shell accounts, SSH was designed as a
replacement for TELNET and other insecure remote shells,
which send information, notably passwords, in plaintext,
leaving them open for interception. The encryption used by
SSH provides confidentiality and integrity of data over
an insecure network, such as the Internet.

— Wikipedia

SSH Binary Packet Protocol

p—

Sequence Packet Pad
Number 4 Length 4| Len 1

Payload Padding o4

MAC tag

» Stateful Encode-then-E&M construction

* Packet length field measures the size of the packet: |PadLen|+ |Payload| + |Padding|.
* RFC 4253 (2006): various block ciphers in CBC mode (with chained 1V) and RCj.
* RFC 4344 (2006): added CTR mode for the corresponding block ciphers.

Timeline of related work on SSH BPP

2002.

* Formal security analysis of SSH BPP by Bellare, Kohno and Namprempre
[BKNo2]: introduce stateful security notions for symmetric encryption and
proved SSH-CTR and SSH-CBC variants (w/o IV chaining) secure.

20009.

* Albrecht, Paterson and Watson [APWog] discover a plaintext-recovery attack
against SSH in CBC mode.

* The attack exploits fragmented delivery in TCP/IP, and works on all CBC
variants considered in [BKNo2].

* The then leading implementation was OpenSSH (reported 80% of servers);
OpenSSH team release a patch in version 5.2 to stop the specific attack.

Timeline of related work on SSH BPP

2010.
* The [APWog] attack highlights deficiencies in the [BKNo02] security model.

* Paterson and Watson [PW10] prove SSH-CTR secure in an extended security
model that allows adversary to deliver fragmented ciphertexts.

2012.

* Boldyreva, Degabriele, Paterson and Stam [BDPS12] study ciphertext
fragmentation more generally, addressing limitations in the [PW10] model,
introducing IND-CFA security.

* [BDPSa2] also considers boundary hiding and resistance to a special type of
denial of service attack as additional security requirements.

—

DB IR LIS
R R R RIRIRIR IR
D S NS SE SIS

‘I/\‘I'—/.\

' ZON NOZONCZON

i PN

SSH measurement study

SSH measurement study

* In [ADHP16], we performed a measurement study of SSH
deployment.

* We conducted two complete IPv4 address space scans in Nov/Dec
2015 and Jan 2016 using ZGrab/Zmap.

* Grabbing banners and SSH servers’ preferred algorithms.

* Actual cipherused in a given SSH connection depends on client and server
preferences.

* Roughly 224 servers found in each scan.

* Nmap fingerprinting suggests mostly embedded routers and firewall
devices.

* Data available at:
https://bitbucket.org/malb/a-surfeit-of-ssh-cipher-suites/overview

SSH versions

software scan 2015-12 scan 2016-01
dropbear_2014.66 7,229,491 (42.0%) 8,334,758 (47.0%)
OpenSSH_5.3 2,108,738 (12.3%) 2,133,772 (12.0%)
OpenSSH_6.6.1pl 1,198,987 (7.0%) 1,124,914 (6.3%)
OpenSSH_6.0pl 554,295 (3.2%) 573,634 (3.2%)
OpenSSH_5.9pl 467,809 (2.7%) 500,975 (2.8%)
dropbear_2014.63 422,764 (2.5%) 197,353 (1.1%)
dropbear_0.51 403,923 (2.3%) 434,839 (2.5%)
dropbear_2011.54 383,575 (2.2%) 64,666 (0.4%)
ROSSSH 345,916 (2.0%) 333,992 (1.9%)
OpenSSH_6.6.1 338,787 (2.0%) 252,856 (1.4%)
dropbear_0.46 301,913 (1.8%) 335,425 (1.9%)
OpenSSH_5.5pl 262,367 (1.5%) 272,990 (1.5%)
OpenSSH_6.7pl 261,867 (1.5%) 213,843 (1.2%)
OpenSSH_6.2 255,088 (1.5%) 288,710 (1.6%)
dropbear_2013.58 236,409 (1.4%) 249,284 (1.4%)
dropbear_0.53 217,970 (1.3%) 213,670 (1.2%)
dropbear_0.52 132,668 (0.8%) 136,196 (0.8%)
OpenSSH 110,602 (0.6%) 108,520 (0.6%)
OpenSSH_5.8 88,258 (0.5%) 4
OpenSSH_5.1 86,338 (0.5%)
OpenSSH_5.3pl 84,559 (0.5%)
OpenSSH_7.1 83,793 (0.5%)

SSH versions

software scan 2015-12 scan 2016-01
dropbear_2014.66 7,229,491 (42.0%) 8,334,758 (47.0%)
OpenSSH_5.3 2,108,738 (12.3%) 2,133,772 (12.0%)
OpenSSH_6.6.1pl 1,198,987 (7.0%) 1,124,914 (6.3%)

OpenSSH_6.0pl 554,295 (3.2%) 573,634 (3.2%)
OpenSSH_5.9pl 467,899 (2.7%) 500,975 (2.8%)
dropbear_2014.63 422,764 197,353 (1.1%)
dropbear_0.51 403,923 . 434,839
dropbear_2011.54 383,575
ROSSSH 345,016
OpenSSH_6.6.1 338,787
| dropbear_0.46 301,913
OpenSSH_5.5pl 262,367
OpenSSH_6.7pl 261,867
OpenSSH_6.2 255,088
dropbear_2013.58 236,409 . 249,284 (1.4%)
dropbear_0.53 217,970 . 213,670 (1.2%)
dropbear_0.52 132,668 . 136,196 (0.8%)
OpenSSH 110,602 6 108,520 (0.6%)
OpenSSH_5.8 88,258 . 89,144 (0.5%)
OpenSSH_5.1 86,338 : 44,170 (0.2%)
OpenSSH_5.3pl 84,559 . 0 (0.0%)
OpenSSH_7.1 83,793 . 0 (0.0%)

The state of SSH today: SSH versions

software scan 2015-12 scan 2016-01
dropbear_2014.66 7,229,491 (42.0%) 8,334,758 (47.0%)
OpenSSH_5.3 2,108,738 (12.3%) 2,133,772 (12.0%)
OpenSSH_6.6.1pl 1,198,987 (7.0%) 1,124914 (6.3%)
OpenSSH_6.0pl 554,295 (3.2%) 573,634 (3.2%)
OpenSSH 5. 9pl 467.899 (2.7%) 500,975 (2.8%)
dropbear_2014.63 422,764 (2.5%) 197,353 (1.1%)
dropbear_0.51 403,923 (2.3%) 434,839 (2.5%)
dropbear_2011.54 383,575 (2.2%) 64,666 (0.4%)
ROSSSH 345,916 (2.0%) 333,992 (1.9%)
OpenSSH_6.6.1 338,787 (2.0%) 252,856 (1.4%)
dropbear_0.46 301,913 (1.8%) 335,425 (1.9%)
OpenSSH_5. 5pl 262,367 (1.5%) 272,990 (1.5%)
OpenSSH_6.7pl 261,867 (1.5%) 213,843 (1.2%)
OpenSSH_6.2 255,088 (1.5%) (1.6%)
dropbear_2013.58 236,409 (1.4%) 249,2
dropbear_0.53 217,970 (1.3%) ¢
dropbear_0.52 132,668 (0.8%)
OpenSSH 110,602 (0.6%)
OpenSSH_5.8 88,258 (0.5%)

OpenSSH_5.1
OpenSSH_5.3pl
OpenSSH_7.1

86,338
84,559
83,793

* Dropbear dominates over OpenSSH.

* Long tail of old software versions.

* Most popular version of OpenSSH was version 5.3, released
Oct 2009 (current version is 7.5).

* Determined by major Linux distros?

* Non-negligible percentage of Dropbear and OpenSSH
servers were potentially still vulnerable to the 2009
attack.

* 8.4% for Dropbear.

OpenSSH preferred algorithms

encryption and mac algorithm count
aesl28-ctr + hmac-md5 3,877,790 (57.65%)
aesl28-ctr + hmac-md5-etm@ 2,010,936 (29.90%)
aesl28-ctr + umac-64-etm@ 331,014 (4.92%)
aes]28-cbc + hmac-md5 161,624 (2.40%)
chacha20-polyl1305@ 115,526 (1.72%)
aesl28-ctr + hmac-shal 68,027 (1.01%)
des + hmac-md5 40,418 (0.60%)
aes256-gcm@ 28,019 (0.42%)
aesZbb-ctr + hmac-shaz-512 17,897 (0.27%)
aesl28-cbc + hmac-shal 11,082 (0.16%)
aesl28-ctr + hmac-ripemdl60 10,621 (0.16%)

OpenSSH preferred algorithms (“@”="Qopenssh.com”)

* Lots of diversity (155 different combinations).
* (TR dominates, followed by CBC, surprising amount of EtM.
* ChaCha2o-Poly1305 on the rise? (became default in OpenSSH 6.9).

* Small amount of GCM.

Dropbear preferred algorithms

encryption and mac algorithm count
aesl28-ctr + hmac-shal-96 8,724,863 (90.44%)
aesl28-cbc + hmac-shal-96 478,181 (4.96%)
3des-cbc + hmac-shal 321,492 (3.33%)
aesl28-ctr + hmac-shal 62,465 (0.65%)
aesl28-ctr + hmac-sha2-256 36,150 (0.37%)
aesl28-cbc + hmac-shal 14,477 (0.15%)

Dropbear preferred algorithms

* Lessdiversity than OpenSSH.
* (TR also dominates, followed by CBC.
* No "exotic” options.

* Al CBC modes unpatched against variant of 2009 attack (8.4%).

y;,- - @ - e L b= @ e L = - -~ - -3
; a‘. g g g
G I I N N NN

R S S S

o
<3 e s
: o s
R
S SIS,

O .
“ AL‘ d
< >, e
o ANG/0 ‘ |
An unfortunate sequence of attacks on CBC

D i
mode in OpenSSH

T\ v /\:’ ,

SSH Binary Packet Protocol

p—

Sequence Packet Pad
Number 4 Length 4| Len 1

Payload Padding o4

MAC tag

How would you perform decryption for an incoming sequence
of ciphertext fragments?

The [APWog] attack (simplified)

* Decryption in OpenSSH CBC mode (prior to 5.2):

Use a buffer to hold the incoming sequence of ciphertext
fragments.

Decrypt the fragments block-by-block as they arrive.

4-byte packet length field LF is obtained from the first block
of the first fragment to be received.

Continue to buffer+decrypt until a total of LF+|MAC| bytes
have been received.

Verify the MAC on SQN || PTXT (with connection
termination and error message if MAC verification fails).

Breaking CBC mode in SSH [APWog]

Ci-1 Ci \ Target ciphertext

| block from stream

Breaking CBC mode in SSH [APWog]

C,-* :
Inject target
\ block as first block of

new ciphertext!

Breaking CBC mode in SSH [APWog]

v C’

Treated as length field

Breaking CBC mode in SSH [APWog]

vV C R R

Breaking CBC mode in SSH [APWog]

IV c/ R R
| I

dK dK dK

> >)

v,
1] y J

MAC tag

Once enough data has arrived, the receiver will get what it thinks is the

MAC tag
— The MAC verification will fail with overwhelming probability
— So the connection is terminated (with an error message)

Question: How much data is "enough” so that the receiver decides to

check the MAC?
Answer: whatever is specified in the length field: .

Breaking CBC mode in SSH [APWog]

v

* Knowing IV and 32 bits of P_, the attacker can now recover
32 bits of the target plaintext block P,".

| @ 1v1,.. =

Ci- 1

dy

v,

@ [Ci1To.3

The [APWog] attack (less simplified)

* OpenSSHs.1 actually performs two sanity checks on the
length field when decrypting the first ciphertext block:

* Check1:5<LF<2
* Check 2: total length (LF+4) is a multiple of the block size:
LF +4 mod BL = o.

* Each check produces a different error message on the
network, distinguishable by attacker.

* If both checks pass, then OpenSSH waits for more bytes,
then performs MAC check, resulting in a third distinct
error message.

* The different error messages allow up to 32 bits of
plaintext to be recovered with probability 2-8.

OpenSSH 5.2 patch against [APWog] attack

Sanity checks:

5<LF<2® —= FAIL — ssh2_m3g<disconnect
LF+4modBL=0

1 — Wait until 228 bytes have arrived,
PASS then check a MAC on 228 bytes.

!

Wait for LF+|MAC| bytes

- — FAIL — “corru AC on input”

— Wait until 228 bytes have arrived,
then check a MAC on 28 bytes.

No error message is sent until 228 bytes of ciphertext have arrived.

Is this a good patch?

OpenSSH 5.2 patch against [APWog] attack

Sanity checks:

5<LF<2® —= FAIL — ssh2_m3g<disconnect
LF+4modBL=0

1 — Wait until 228 bytes have arrived,
PASS then check a MAC on 228 bytes.
1 MAC on 28 bytes

Wait for LF+|MAC| bytes

- — FAIL — “corru AC on input”

MACon ~LF bytes+ __, Wait until 2*® bytes have arrived,
MAC on 28 bytes then check a MAC on 28 bytes.

No error message is ever sent until 228 bytes of ciphertext have arrived.

[ADHP16] attack against the OpenSSH 5.2 patch

»

28 bytes (quickly)

Time { MAC error

MAC on ~LF bytes + MAC on 28 bytes
MAC on 228 bytes Sanity check FAIL

Sanity check PASS

« Attacker can distinguish PASS/FAIL conditions, leaking 18 bits of plaintext.
* With careful timing, attacker can recover ~30 bits of plaintext.

OpenSSH 7.3 patch against [ADHP16] attack

Sanity checks:

5<LF<2® —= FAIL — ssh2_m3g<disconnect
LF+4modBL=0

1 — Wait until 228 bytes have arrived,
PASS then check a MAC on 228 bytes.
1 MAC on 28 bytes

Wait for LF+|MAC| bytes

- — FAIL — “corru AC on input”

MAC on ~LF bytes + — Wait until 2 ave arrived,
MAC on 228 - LF bytes then c a MA 8 bytes.

— Wait until 228 bytes have arrived,
then check a MAC on 228 - LF bytes.

So is this a good patch?

Attacking the OpenSSH 7.3 patched patch

»

288_BL-1 bytegw

Wait a few seconds

1 byte

MAC on ~F bytes|+ MAC on[228 bytes
MAC on|2*® - LF bytes| «Sanity check FAILY

Sanity check PASS

Attacking the OpenSSH 7.3 patched patch

MAC on ~F bytes|+ MAC on[228 bytes
MAC on|2® - LF bytes| «Sanity check FA|L\
Sanity check PASS

it
S
.h .“ \
" -
EN

A g ety (ORI

Disclosure of the attacks

We first notified the OpenSSH team of the attack on the patch for
the [APWog] attack on 5/5/2016.

They first set of countermeasures in OpenSSH 7.3 (released
1/8/2016).

We then notified OpenSSH of the new attack on 15/12/2016, along
with some other, more subtle byte counting issues.

These were partly addressed in OpenSSH 7.5 (released 20/3/2017).

But several residual issues remain unpatched, including the final
attack.

In defence of OpenSSH:

* OpenSSH has steadily been deprecating old algorithms and modes.

* For example, CBC mode was already disabled by default in OpenSSH
6.7.

Security analysis of other SSH and OpenSSH modes —
CTR, gEtM, AES-GCM, ChaCha2oPoly1305

OpenSSH encryption modes

A number of new schemes have been introduced in OpenSSH
since [APWo9]:

* AES-GCM: since v6.2; length field not encrypted but is instead
treated as associated data.

* generic Encrypt-then-MAC (gEtM): since v6.2; overrides native

E&M processing; length field not encrypted but protected by
MAC.

* ChaCha2o-Poly13o5@openssh.com: since v6.5 and promoted
to default in v6.9; reintroduces encryption of length field.

Binary Packet Protocol native E&M construction

p—

Sequence Packet Pad
Number 4 Length 4| Len 1

Payload Padding o4

MAC tag

Binary Packet Protocol generic EtM construction

Sequence Packet Pad
Number 4 Length 4] Len 1

Payload Padding 4

Packet
Length

MAC tag

mni

5)
rd

* Stateful Encode-then-EtM construction.
* AES-GCM works similarly.

* Note packet length field in the clear.

* Code = documentation.

Binary Packet Protocol generic EtM security issue

(mac && mac->enabled && mac->etm) {
((r = mac_compute(mac, state->p_read.seqnr, ==

sshbuf reserve(state->incoming packet, aadlen + need, ==

cipher_ crypt(&state->receive_ context, state->p read.seqnr, cp, ==
sshbut_consume(state->1nput, aadlen + need + authlen)) i= v)
out;

((r
((r
((r

(mac && mac->enabled) {
(!mac->etm) ==
(timingsafe bcmp(macbuf, sshbuf ptr(state->input), ==

Sequence: compute MAC, then decrypt, then check MAC,

Issue arises because of retrofitting gEtM in legacy E&M code.

No concrete attack, but dangerous to decrypt unauthenticated ciphertext (cf.
padding oracle attacks).

Addressed in OpenSSH 7.3.

ChaCha2o-Poly1305@0penssh.com

Packet Pad
SQN 4 Length 4| Len 1

| _g—
[SQN164,B
-,
0256
A /
[SQN]gs BWE Ol | | i
|

Kooy

Payload Padding o4

v

[SQN],,,Blk=

e ChaCha20-Poly13o05@openssh.com: since OpenSSH 6.5 and promoted to default in
v6.9; reintroduces encryption of length field.

* OpenSSH developers seem to care a lot about hiding packet lengths!

Security analysis from [ADHP16]

* We used the framework of [BDPS12] for symmetric
encryption schemes supporting ciphertext
fragmentation to analyse the security of these
schemes.

* We identified and fixed a technical issue in the IND-
sfCFA confidentiality definition from [BDPSa2].

* We introduced a matching notion of ciphertext

integrity, INT-sfCTXT, which was not considered in
[BDPSa2].

Security analysis from [ADHP16]

IND-sfCFA || INT-sfCTF || BH-CPA || BH-sfCFA n-DOS-sfCFA
CBC X X X
fixed-CBC X X X
CTR X X
fgEtM X X X
AES-GCM X X X
ChaCha20-Poly1305 X X

Security comparison of SSH AE modes

Additional goals from [BDPS12]:

* BH-CPA (passive adversary) — boundary hiding for passive attackers.

* BH-sfCFA (active adversary) — boundary hiding for active attackers.

* n-DOS-sfCFA: decryption must produce some output (plaintext or error) after
receiving at most an n-bit sequence of fragments chosen by adversary.

MM,
*eggg¢¢¢¢
RS

NG ZINGCTING 2NNV
S
InterMAC

0

InterMAC

An encryption scheme proposed in [BDPS12].
Parameterised by a positive integer N (the chunk length).

Satisfies all 5 security notions:
IND-sfCFA, IND-sfCTF, BH-CPA, BH-sfCFA, (N + [MAC|)-DOS-sfCFA.

Applies a generic EtM construction to chunks of data,
incorporating additional metadata in the MAC computation.

Simple, easy to analyse construction; advanced security
properties are intuitively obvious.

Small N: good DoS protection, but larger bandwidth overhead.

Idea: refine and implement InterMAC in OpenSSH to obtain
stronger security than is currently available.

InterMAC

Payload
| N-1 | N-1 | N-1 |
o) o) 1
ChunkCTR | © 1 2
MsgCTR | ¢ c c| ~
C1 Tl Cz TZ C3 T3
C, T, C, T, C, U

InterMAC: From Theory to Practice

Use byte-oriented rather than bit-oriented format.

Abandon underlying SSH packet format (so no length field, no
padding byte, no random padding).

Need some kind of plaintext padding (length not usually a multiple of
N-1!): variant of ABYTE padding.

Replace EtM with nonce-based AEAD, e.qg. AES-GCM or ChaCha2o-
Poly1305.

Chunk and message counter then become Associated Data, or are
used to construct the nonce.

* We choose the latter.

InterMACIib and OpenSSH

* C-implementation of InterMAC.

* Aimis to make the library easy to use for a
developer.

* API: im_initialise, im_encrypt, im_decrypt. 0

* Message counter and nonce management done by
the library. i

* Currently supports ChaCha-Poly and AES-GCM.

* Easy to extend with other AEAD schemes.
* POCintegration into OpenSSH (v7.4).

* SSH InterMAC cipher suites: im-aes128-gcm-N,
im-chacha-poly-N.

InterMACIib Throughput — SCP on Loopback

im-chacha-poly-4096
im-aes128-gcm-4096
im-chacha-poly-2048
im-aes128-gcm-2048
im-chacha-poly-1024
im-aes128-gcm-1024
im-chacha-poly-512
im-aes128-gcm-512
im-chacha-poly-256
im-aes128-gcm-256
im-chacha-poly-128

im-aes128-gcm-128

aes128-ctr + hmac-ripemdi60
aes128-cbc + hmac-sha1

aes256-ctr + hmac-sha2-512

aes128-gcm@

3des-chbc + hmac-mds

aes128-ctr + hmac-shai

chacha2o-poly1305@

aes128-cbc + hmac-mdsg
aes128-ctr + umac-64-etm@

aes128-ctr + hmac-ds-etm@

aes128-ctr + hmac-mdsg

80

(o]
B
(o]
N
(o]
w
(o]
~
(o]
U1
[e]
[e)]
(o]
~
(o]

MB/s

InterMACIib Throughput - AWS_London to

AWS_Oregon.

Throughput (100MB file)

im-chacha-poly-4096
im-aes128-gcm-4096 R
im-chacha-poly-2048 R
im-aes128-gcm-2048 R
im-chacha-poly-1024 R
im-aes128-gcm-1024 R
im-chacha-poly-512 R
im-aes128-gcm-512 R
im-chacha-poly-256 R
im-aes128-gcm-256 R
im-chacha-poly-128 R
im-aes128-gcm-128 R
aesl28-gcm@openssh.com 8
chacha20-polyl305@openssh.com 8
aesl28-ctr+hmac-ripemdl160 R
aesl28-cbc+hmac-shal R
aes256-ctr+hmac-sha2-512 R
3des-cbc+hmac-md5 R
aesl28-ctr+hmac-shal R
aesl28-ctr+umac-64-etm@openssh.com 8

aesl28-ctr+hmac-md5-etm@openssh.com 8
aesl28-ctr+hmac-md>5 e

MB/s

InterMACIib Total Bandwidth — AWS_London to

AWS_Oregon.

Total encrypted bytes
im-chacha-poly-4096 :

im-aes128-gcm-4096 g
im-chacha-poly-2048 .
im-aes128-gcm-2048 g
im-chacha-poly-1024 .
im-aes128-gcm-1024 g
im-chacha-poly-512 .
im-aes128-gcm-512 .
im-chacha-poly-256 .
im-aes128-gcm-256 .
im-chacha-poly-128 .
im-aes128-gcm-128 .
aesl28-gcm@openssh.com .
chacha20-polyl305@openssh.com .
aesl28-ctr+hmac-ripemdl60 .
aesl28-cbc+hmac-shal g
aes256-ctr+hmac-sha2-512 g
3des-cbc+hmac-md5 g
aesl28-ctr+hmac-shal g
aesl28-ctr+umac-64-etm@openssh.com .

aesl28-ctr+hmac-md5-etm@openssh.com .
aesl28-ctr+hmac-md>5

f@¢&$»%¢¢%
SRR
IHAAON
RIS

38> e o>
Concluding Remarks

RS

'*‘\/ﬁ\/A DI/

SRR R B

Concluding Remarks

* We have developed a deeper understanding of the diverse
set of encryption modes available in (Open)SSH.

* Measurement study, new attacks on CBC mode, security analysis

* None of the schemes in use possesses all the security
properties desirable for SSH.

* Boundary-hiding and DoS-resistance not achieved.
* Yet such schemes do exist, e.g. InterMAC from [BDPS122].

* In our on-going work, we are developing and prototyping
efficient, provably secure alternatives that have all the
desired properties.

Selected Literature

[BKNo2] Bellare, Kohno, Namprempre, Authenticated encryption
in SSH: provably fixing the SSH binary packet protocol, ACM CCS

2002.

[APWog] Albrecht, Paterson, Watson, Plaintext Recovery Attacks
against SSH, IEEE Symposium on Security and Privacy 2009.

[PW10] Paterson, Watson, Plaintext-Dependent Decryption: A
Formal Security Treatment of SSH-CTR, Eurocrypt 2010.

[BDPS12] Boldyreva, Degabriele, Paterson, Stam, Security of
Symmetric Encryption in the Presence of Ciphertext Fragmentation,
Eurocrypt 2012.

[ADHP16] Albrecht, Degabriele, Hansen, Paterson, A Surfeit of
SSH Cipher Suites, ACM-CCS 2016.

